The structure of connected (graded) Hopf algebras revisited

نویسندگان

چکیده

Let H be a connected graded Hopf algebra over field of characteristic zero and K an arbitrary subalgebra H. We show that there is family homogeneous elements indexed by totally order set satisfy several desirable conditions, which reveal interesting connections between K. In particular, the on non-decreasing products these give basis for as left right K-module. As one its consequences, we see iterated Ore extension derivation type provided finite Gelfand-Kirillov dimension. The main tool this work Lyndon words, along idea developed Lu, Shen second-named author in [24].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalization in connected graded Hopf algebras: an introduction

We give an account of the Connes-Kreimer renormalization in the context of connected graded Hopf algebras. We first explain the Birkhoff decomposition of characters in the more general context of connected filtered Hopf algebras, then specializing down to the graded case in order to introduce the notions of locality, renormalization group and Connes-Kreimer’s Beta function. The connection with ...

متن کامل

On the Structure of Tame Graded Basic Hopf Algebras Ii

In continuation of the article [28] we classify all radically graded basic Hopf algebras of tame type over an algebraically closed field of characteristic 0.

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Graded Hopf Algebras and Pairings

We study positively-graded Hopf algebras and obtain (dual) Gabriel-type results on graded Hopf algebras. Using it, we get certain (non-degenerate) graded Hopf pairings between quantum symmetric algebras.

متن کامل

Antipode and Convolution Powers of the Identity in Graded Connected Hopf Algebras

We study convolution powers id∗n of the identity of graded connected Hopf algebras H . (The antipode corresponds to n = −1.) The chief result is a complete description of the characteristic polynomial—both eigenvalues and multiplicity—for the action of the operator id∗n on each homogeneous component Hm. The multiplicities are independent of n. This follows from considering the action of the (hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.07.031