The structure of connected (graded) Hopf algebras revisited
نویسندگان
چکیده
Let H be a connected graded Hopf algebra over field of characteristic zero and K an arbitrary subalgebra H. We show that there is family homogeneous elements indexed by totally order set satisfy several desirable conditions, which reveal interesting connections between K. In particular, the on non-decreasing products these give basis for as left right K-module. As one its consequences, we see iterated Ore extension derivation type provided finite Gelfand-Kirillov dimension. The main tool this work Lyndon words, along idea developed Lu, Shen second-named author in [24].
منابع مشابه
Renormalization in connected graded Hopf algebras: an introduction
We give an account of the Connes-Kreimer renormalization in the context of connected graded Hopf algebras. We first explain the Birkhoff decomposition of characters in the more general context of connected filtered Hopf algebras, then specializing down to the graded case in order to introduce the notions of locality, renormalization group and Connes-Kreimer’s Beta function. The connection with ...
متن کاملOn the Structure of Tame Graded Basic Hopf Algebras Ii
In continuation of the article [28] we classify all radically graded basic Hopf algebras of tame type over an algebraically closed field of characteristic 0.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولGraded Hopf Algebras and Pairings
We study positively-graded Hopf algebras and obtain (dual) Gabriel-type results on graded Hopf algebras. Using it, we get certain (non-degenerate) graded Hopf pairings between quantum symmetric algebras.
متن کاملAntipode and Convolution Powers of the Identity in Graded Connected Hopf Algebras
We study convolution powers id∗n of the identity of graded connected Hopf algebras H . (The antipode corresponds to n = −1.) The chief result is a complete description of the characteristic polynomial—both eigenvalues and multiplicity—for the action of the operator id∗n on each homogeneous component Hm. The multiplicities are independent of n. This follows from considering the action of the (hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.07.031